pqp.estimation package¶
Submodules¶
pqp.estimation.estimator module¶
- class pqp.estimation.estimator.EstimationResult(operation, step)¶
Bases:
Result
Stores the result of estimation
- value¶
the estimated value
- Type:
float
- class pqp.estimation.estimator.Estimator(op)¶
Bases:
Result
,ABC
Abstract base class for estimators
- approx(expr, assignments=None)¶
Approximates the value of an expression
- Parameters:
expr (
AbstractExpression
) – The expression to approximateassignments (
dict
) – variable assignments (optional)
- Returns:
the approximate value of the expression
- Return type:
float
- abstract domain_of(var)¶
Return the domain of a Variable
- Parameters:
var (
Variable
orstr
) – The variable to get the domain of- Returns:
the domain of the variable
- Return type:
Domain
- abstract estimate(expr: AbstractExpression, assignments=None)¶
Estimate the value of an expression
- Parameters:
expr (
AbstractExpression
) – The expression to estimateassignments (
dict
) –dict
of variable assignments (optional)
- Returns:
the result of the estimation
- Return type:
- abstract get_observed()¶
Return the set of Variables that are considered observed in the model
- Returns:
the observed variables
- Return type:
set
pqp.estimation.multinomial_estimator module¶
- class pqp.estimation.multinomial_estimator.MultinomialEstimator(data, observed=None, prior=0, coerce=True)¶
Bases:
Estimator
Estimates the distribution of a categorical variable using a multinomial likelihood and dirichlet prior
At a basic level, this estimator estimates the probability of an observation using the proportion of past observations which are identical. When prior is set to zero, this is exactly what it does, and positivty is not guaranteed.
If you set prior to a positive value, this is interpreted as a number of “virtual” observations. The estimator behaves as if, before fitting to the data, it had already seen this many data points. It distributes this likelihood evenly across all possible observations in the domain of the variables. This guarantess positivity.
- Parameters:
data (Data) – The data to use for the distribution
observed (list) – The variables which are considered observed, defaults to all
prior (float) – The prior strength, defaults to 0
coerce (bool) – If True, coerce the data to a Data object, defaults to True
- domain_of(var)¶
Return the domain of a Variable
- Parameters:
var (
Variable
orstr
) – The variable to get the domain of- Returns:
the domain of the variable
- Return type:
Domain
- estimate(**kwargs)¶
Estimate the value of an expression
- Parameters:
expr (
AbstractExpression
) – The expression to estimateassignments (
dict
) –dict
of variable assignments (optional)
- Returns:
the result of the estimation
- Return type:
- get_observed()¶
Return the set of Variables that are considered observed in the model
- Returns:
the observed variables
- Return type:
set